# References

Adair, G. (1984). The hawthorne effect: A reconsideration of the
methodological artifact.

*Journal of Applied Psychology*,*69*, 334–345.
Agresti, A. (1996).

*An introduction to categorical data analysis*. Wiley.
Agresti, A. (2002).

*Categorical data analysis*(2nd ed.). Wiley.
Akaike, H. (1974). A new look at the statistical model identification.

*IEEE Transactions on Automatic Control*,*19*, 716–723.
Anscombe, F. J. (1973). Graphs in statistical analysis.

*American Statistician*,*27*, 17–21.
Bickel, P. J., Hammel, E. A., & O’Connell, J. W. (1975). Sex bias in
graduate admissions: Data from Berkeley.

*Science*,*187*, 398–404.
Box, G. E. P. (1953). Non-normality and tests on variances.

*Biometrika*,*40*, 318–335.
Box, J. F. (1987). Guinness, gosset, fisher, and small samples.

*Statistical Science*,*2*, 45–52.
Brown, M. B., & Forsythe, A. B. (1974). Robust tests for equality of
variances.

*Journal of the American Statistical Association*,*69*, 364–367.
Campbell, D. T., & Stanley, J. C. (1963).

*Experimental and quasi-experimental designs for research*. Houghton Mifflin.
Chronbach, L. J. (1951). Coefficient alpha and the internal structure of
tests.

*Psychometrika*,*16(3)*, 297–334.
Cochran, W. G. (1954). The

*χ*^{2}test of goodness of fit.*The Annals of Mathematical Statistics*,*23*, 315–345.
Cohen, J. (1988).

*Statistical power analysis for the behavioral sciences*(2nd ed.). Lawrence Erlbaum.
Cramer, H. (1946).

*Mathematical methods of statistics*. Princeton University Press.
Dunn, O. J. (1961). Multiple comparisons among means.

*Journal of the American Statistical Association*,*56*, 52–64.
Ellis, P. D. (2010).

*The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results*. Cambridge University Press.
Evans, J. St. B. T., Barston, J. L., & Pollard, P. (1983). On the
conflict between logic and belief in syllogistic reasoning.

*Memory and Cognition*,*11*, 295–306.
Evans, M., Hastings, N., & Peacock, B. (2011).

*Statistical distributions (3rd ed)*. Wiley.
Everitt, B. S. (1996).

*Making sense of statistics in psychology. A second-level course*. Oxford University Press.
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J.
(1999). Evaluating the use of exploratory factor analysis in
psychological research.

*Psychological Methods*,*4*, 272–299.
Fisher, R. A. (1922a). On the interpretation of

*χ*^{2}from contingency tables, and the calculation of*p*.*Journal of the Royal Statistical Society*,*84*, 87–94.
Fisher, R. A. (1922b). On the mathematical foundation of theoretical
statistics.

*Philosophical Transactions of the Royal Society A*,*222*, 309–368.
Fisher, R. A. (1925).

*Statistical methods for research workers*. Oliver & Boyd.
Fox, J., & Weisberg, S. (2011).

*An R companion to applied regression*(2nd ed.). Sage.
Gelman, A., & Stern, H. (2006). The difference between
“significant” and “not significant” is not
itself statistically significant.

*The American Statistician*,*60*, 328–331.
Geschwind, N. (1972). Language and the brain.

*Scientific American*,*226(4)*, 76–83.
Hays, W. L. (1994).

*Statistics*(5th ed.). Harcourt Brace.
Hedges, L. V. (1981). Distribution theory for glass’s estimator of
effect size and related estimators.

*Journal of Educational Statistics*,*6*, 107–128.
Hedges, L. V., & Olkin, I. (1985).

*Statistical methods for meta-analysis*. Academic Press.
Hewitt, A. K., Foxcroft, D. R., & MacDonald, J. (2004).
Multitrait-multimethod confirmatory factor analysis of the attributional
style questionnaire.

*Personality and Individual Differences*,*37(7)*, 1483–1491.
Hogg, R. V., McKean, J. V., & Craig, A. T. (2005).

*Introduction to mathematical statistics*(6th ed.). Pearson.
Holm, S. (1979). A simple sequentially rejective multiple test
procedure.

*Scandinavian Journal of Statistics*,*6*, 65–70.
Hróbjartsson, A., & Gøtzsche, P. (2010). Placebo interventions for
all clinical conditions.

*Cochrane Database of Systematic Reviews*,*1*. https://doi.org//10.1002/14651858.CD003974.pub3
Hsu, J. C. (1996).

*Multiple comparisons: Theory and methods*. Chapman; Hall.
Ioannidis, J. P. A. (2005). Why most published research findings are
false.

*PLoS Med*,*2*(8), 697–701.
Jeffreys, H. (1961).

*The theory of probability*(3rd ed.). Oxford.
Johnson, V. E. (2013). Revised standards for statistical evidence.

*Proceedings of the National Academy of Sciences*,*48*, 19313–19317.
Kahneman, D., & Tversky, A. (1973). On the psychology of prediction.

*Psychological Review*,*80*, 237–251.
Kass, R. E., & Raftery, A. E. (1995). Bayes factors.

*Journal of the American Statistical Association*,*90*, 773–795.
Keynes, J. M. (1923).

*A tract on monetary reform*. Macmillan; Company.
Kruschke, J. K. (2011).

*Doing Bayesian data analysis: A tutorial with R and BUGS*. Academic Press.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in
one-criterion variance analysis.

*Journal of the American Statistical Association*,*47*, 583–621.
Kühberger, A., Fritz, A., & Scherndl, T. (2014). Publication bias in
psychology: A diagnosis based on the correlation between effect size and
sample size.

*Public Library of Science One*,*9*, 1–8.
Larntz, K. (1978). Small-sample comparisons of exact levels for
chi-squared goodness-of-fit statistics.

*Journal of the American Statistical Association*,*73*, 253–263.
Lee, M. D., & Wagenmakers, E.-J. (2014).

*Bayesian cognitive modeling: A practical course*. Cambridge University Press.
Lehmann, E. L. (2011).

*Fisher, Neyman, and the creation of classical statistics*. Springer.
Levene, H. (1960). Robust tests for equality of variances. In I. O. et
al (Ed.),

*Contributions to probability and statistics: Essays in honor of harold hotelling*(pp. 278–292). Stanford University Press.
McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree:
The case of

*r*and*d*.*Psychological Methods*,*11*, 386–401.
Meehl, P. H. (1967). Theory testing in psychology and physics: A
methodological paradox.

*Philosophy of Science*,*34*, 103–115.
Pearson, K. (1900). On the criterion that a given system of deviations
from the probable in the case of a correlated system of variables is
such that it can be reasonably supposed to have arisen from random
sampling.

*Philosophical Magazine*,*50*, 157–175.
Peterson, C., & Seligman, M. (1984). Causal explanations as a risk
factor for depression: Theory and evidence.

*Psychological Review*,*91*, 347–374.
Pfungst, O. (1911).

*Clever hans (the horse of mr. Von osten): A contribution to experimental animal and human psychology*(C. L. Rahn, Trans.). Henry Holt.
Rosenthal, R. (1966).

*Experimenter effects in behavioral research*. Appleton.
Sahai, H., & Ageel, M. I. (2000).

*The analysis of variance: Fixed, random and mixed models*. Birkhauser.
Shaffer, J. P. (1995). Multiple hypothesis testing.

*Annual Review of Psychology*,*46*, 561–584.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test
for normality (complete samples).

*Biometrika*,*52*, 591–611.
Sokal, R. R., & Rohlf, F. J. (1994).

*Biometry: The principles and practice of statistics in biological research*(3rd ed.). Freeman.
Stevens, S. S. (1946). On the theory of scales of measurement.

*Science*,*103*, 677–680.
Stigler, S. M. (1986).

*The history of statistics*. Harvard University Press.
Student, A. (1908). The probable error of a mean.

*Biometrika*,*6*, 1–2.
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty:
Heuristics and biases.

*Science*,*185*(4157), 1124–1131.
Welch, B. L. (1947). The generalization of
“Student’s” problem when several different
population variances are involved.

*Biometrika*,*34*, 28–35.
Welch, B. L. (1951). On the comparison of several mean values: An
alternative approach.

*Biometrika*,*38*, 330–336.
Wilkinson, L., Wills, D., Rope, D., Norton, A., & Dubbs, R. (2006).

*The grammar of graphics*. Springer.