References
Adair, G. (1984). The hawthorne effect: A reconsideration of the
methodological artifact. Journal of Applied Psychology,
69, 334–345. https://doi.org/10.1037/0021-9010.69.2.334
Agresti, A. (1996). An introduction to categorical data
analysis. Wiley. https://doi.org/10.1002/0470114754
Agresti, A. (2002). Categorical data analysis (2nd ed.). Wiley.
https://doi.org/10.1002/0471249688
Akaike, H. (1974). A new look at the statistical model identification.
IEEE Transactions on Automatic Control, 19, 716–723.
https://doi.org/10.1109/TAC.1974.1100705
Anscombe, F. J. (1973). Graphs in statistical analysis. American
Statistician, 27, 17–21. https://doi.org/10.1080/00031305.1973.10478966
Bickel, P. J., Hammel, E. A., & O’Connell, J. W. (1975). Sex bias in
graduate admissions: Data from Berkeley. Science,
187, 398–404. https://doi.org/10.1126/science.187.4175.398
Box, G. E. P. (1953). Non-normality and tests on variances.
Biometrika, 40, 318–335. https://doi.org/10.2307/2333350
Box, G. E. P. (1976). Science and statistics. Journal of the
American Statistical Association, 71, 791–799. https://doi.org/10.1080/01621459.1976.10480949
Box, J. F. (1987). Guinness, gosset, fisher, and small samples.
Statistical Science, 2, 45–52. https://doi.org/10.1214/ss/1177013437
Brown, M. B., & Forsythe, A. B. (1974). Robust tests for equality of
variances. Journal of the American Statistical Association,
69, 364–367. https://doi.org/10.2307/2285659
Campbell, D. T., & Stanley, J. C. (1963). Experimental and
quasi-experimental designs for research. Houghton Mifflin.
Child, D. (1990). The essentials of factor analysis (2nd ed.).
Cassell Educational.
Chronbach, L. J. (1951). Coefficient alpha and the internal structure of
tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555
Cochran, W. G. (1954). The χ2 test of goodness of
fit. The Annals of Mathematical Statistics, 23,
315–345. https://doi.org/10.1214/aoms/1177729380
Cohen, J. (1988). Statistical power analysis for the behavioral
sciences (2nd ed.). Lawrence Erlbaum. https://doi.org/10.4324/9780203771587
Cramer, H. (1946). Mathematical methods of statistics.
Princeton University Press. https://doi.org/10.1515/9781400883868
Dunn, O. J. (1961). Multiple comparisons among means. Journal of the
American Statistical Association, 56, 52–64. https://doi.org/10.1080/01621459.1961.10482090
Ellis, P. D. (2010). The essential guide to effect sizes:
Statistical power, meta-analysis, and the interpretation of research
results. Cambridge University Press. https://doi.org/10.1017/CBO9780511761676
Evans, J. St. B. T., Barston, J. L., & Pollard, P. (1983). On the
conflict between logic and belief in syllogistic reasoning. Memory
and Cognition, 11, 295–306. https://doi.org/10.3758/BF03196976
Evans, M., Hastings, N., & Peacock, B. (2011). Statistical
distributions (3rd ed). Wiley. https://doi.org/10.1002/9780470627242
Everitt, B. S. (1996). Making sense of statistics in psychology. A
second-level course. Oxford University Press.
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J.
(1999). Evaluating the use of exploratory factor analysis in
psychological research. Psychological Methods, 4,
272–299. https://doi.org/10.1037/1082-989X.4.3.272
Fisher, R. A. (1922a). On the interpretation of χ2 from contingency
tables, and the calculation of p. Journal of the Royal
Statistical Society, 84, 87–94. https://doi.org/10.1111/j.2397-2335.1922.tb00768.x
Fisher, R. A. (1922b). On the mathematical foundation of theoretical
statistics. Philosophical Transactions of the Royal Society A,
222, 309–368. https://doi.org/10.1098/rsta.1922.0009
Fisher, R. A. (1925). Statistical methods for research workers.
Oliver & Boyd.
Fox, J., & Weisberg, S. (2011). An R companion to
applied regression (2nd ed.). Sage.
Gelman, A., & Stern, H. (2006). The difference between
“significant” and “not significant” is not
itself statistically significant. The American Statistician,
60, 328–331. https://doi.org/10.1198/000313006X152649
Geschwind, N. (1972). Language and the brain. Scientific
American, 226(4), 76–83. https://doi.org/10.1038/scientificamerican0472-76
Hays, W. L. (1994). Statistics (5th ed.). Harcourt Brace.
Hedges, L. V. (1981). Distribution theory for glass’s estimator of
effect size and related estimators. Journal of Educational
Statistics, 6, 107–128. https://doi.org/10.2307/1164588
Hedges, L. V., & Olkin, I. (1985). Statistical methods for
meta-analysis. Academic Press. https://doi.org/10.1016/C2009-0-03396-0
Hewitt, A. K., Foxcroft, D. R., & MacDonald, J. (2004).
Multitrait-multimethod confirmatory factor analysis of the attributional
style questionnaire. Personality and Individual Differences,
37(7), 1483–1491. https://doi.org/10.1016/j.paid.2004.02.005
Hogg, R. V., McKean, J. V., & Craig, A. T. (2005). Introduction
to mathematical statistics (6th ed.). Pearson.
Holm, S. (1979). A simple sequentially rejective multiple test
procedure. Scandinavian Journal of Statistics, 6,
65–70. https://doi.org/10.2307/4615733
Hróbjartsson, A., & Gøtzsche, P. (2010). Placebo interventions for
all clinical conditions. Cochrane Database of Systematic
Reviews, 1. https://doi.org/10.1002/14651858.cd003974.pub3
Hsu, J. C. (1996). Multiple comparisons: Theory and methods.
Chapman & Hall. https://doi.org/10.1201/b15074
Ioannidis, J. P. A. (2005). Why most published research findings are
false. PLoS Med, 2(8), 697–701. https://doi.org/10.1371/journal.pmed.1004085
Jeffreys, H. (1961). The theory of probability (3rd ed.).
Oxford. https://doi.org/10.1093/oso/9780198503682.001.0001
Johnson, V. E. (2013). Revised standards for statistical evidence.
Proceedings of the National Academy of Sciences, 48,
19313–19317. https://doi.org/10.1073/pnas.1313476110
Kahneman, D., & Tversky, A. (1973). On the psychology of prediction.
Psychological Review, 80, 237–251. https://doi.org/10.1037/h0034747
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of
the American Statistical Association, 90, 773–795. https://doi.org/10.1080/01621459.1995.10476572
Keynes, J. M. (1923). A tract on monetary reform. Macmillan
& Company.
Kline, P. (1994). An easy guide to factor analysis. Routledge.
https://doi.org/10.4324/9781315788135
Kruschke, J. K. (2011). Doing Bayesian data analysis: A
tutorial with R and BUGS. Academic Press.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in
one-criterion variance analysis. Journal of the American Statistical
Association, 47, 583–621. https://doi.org/10.1080/01621459.1952.10483441
Kühberger, A., Fritz, A., & Scherndl, T. (2014). Publication bias in
psychology: A diagnosis based on the correlation between effect size and
sample size. Public Library of Science One, 9, 1–8. https://doi.org/10.1371/journal.pone.0105825
Larntz, K. (1978). Small-sample comparisons of exact levels for
chi-squared goodness-of-fit statistics. Journal of the American
Statistical Association, 73, 253–263. https://doi.org/10.1080/01621459.1978.10481567
Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cognitive
modeling: A practical course. Cambridge University Press. https://doi.org/10.1017/CBO9781139087759
Lehmann, E. L. (2011). Fisher, Neyman, and the creation
of classical statistics. Springer.
Levene, H. (1960). Robust tests for equality of variances. In Olkin, I.
and others (Ed.), Contributions to probability and statistics:
Essays in honor of harold hotelling (pp. 278–292). Stanford
University Press.
McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree:
The case of r and d. Psychological Methods,
11, 386–401. https://doi.org/10.1037/1082-989x.11.4.386
Meehl, P. H. (1967). Theory testing in psychology and physics: A
methodological paradox. Philosophy of Science, 34,
103–115. https://doi.org/10.1086/288135
Pearson, K. (1900). On the criterion that a given system of deviations
from the probable in the case of a correlated system of variables is
such that it can be reasonably supposed to have arisen from random
sampling. Philosophical Magazine, 50, 157–175. https://doi.org/10.1080/14786440009463897
Peterson, C., & Seligman, M. (1984). Causal explanations as a risk
factor for depression: Theory and evidence. Psychological
Review, 91, 347–374. https://doi.org/10.1037/0033-295X.91.3.347
Pfungst, O. (1911). Clever hans (the horse of mr. Von osten): A
contribution to experimental animal and human psychology (C. L.
Rahn, Trans.). Henry Holt.
Rosenthal, R. (1966). Experimenter effects in behavioral
research. Appleton.
Sahai, H., & Ageel, M. I. (2000). The analysis of variance:
Fixed, random and mixed models. Birkhauser.
Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of
Psychology, 46, 561–584. https://doi.org/10.1146/annurev.ps.46.020195.003021
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test
for normality (complete samples). Biometrika, 52,
591–611. https://doi.org/10.1093/biomet/52.3-4.591
Sokal, R. R., & Rohlf, F. J. (1994). Biometry: The principles
and practice of statistics in biological research (3rd ed.).
Freeman.
Stevens, S. S. (1946). On the theory of scales of measurement.
Science, 103, 677–680. https://doi.org/10.1126/science.103.2684.677
Stigler, S. M. (1986). The history of statistics. Harvard
University Press.
Student, A. (1908). The probable error of a mean. Biometrika,
6, 1–2. https://doi.org/10.1093/biomet/6.1.1
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty:
Heuristics and biases. Science, 185(4157), 1124–1131.
https://doi.org/10.1126/science.185.4157.1124
Welch, B. L. (1947). The generalization of
“Student’s” problem when several different
population variances are involved. Biometrika, 34,
28–35. https://doi.org/10.1093/biomet/34.1-2.28
Welch, B. L. (1951). On the comparison of several mean values: An
alternative approach. Biometrika, 38, 330–336. https://doi.org/10.1093/biomet/38.3-4.330
Wilkinson, L., Wills, D., Rope, D., Norton, A., & Dubbs, R. (2006).
The grammar of graphics. Springer.
Yates, F. (1934). Contingency tables involving small numbers and the
χ2 test.
Supplement to the Journal of the Royal Statistical Society,
1, 217–235. https://doi.org/10.2307/2983604