References

Adair, G. (1984). The hawthorne effect: A reconsideration of the methodological artifact. Journal of Applied Psychology, 69, 334–345. https://doi.org/10.1037/0021-9010.69.2.334
Agresti, A. (1996). An introduction to categorical data analysis. Wiley. https://doi.org/10.1002/0470114754
Agresti, A. (2002). Categorical data analysis (2nd ed.). Wiley. https://doi.org/10.1002/0471249688
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723. https://doi.org/10.1109/TAC.1974.1100705
Anscombe, F. J. (1973). Graphs in statistical analysis. American Statistician, 27, 17–21. https://doi.org/10.1080/00031305.1973.10478966
Bickel, P. J., Hammel, E. A., & O’Connell, J. W. (1975). Sex bias in graduate admissions: Data from Berkeley. Science, 187, 398–404. https://doi.org/10.1126/science.187.4175.398
Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika, 40, 318–335. https://doi.org/10.2307/2333350
Box, G. E. P. (1976). Science and statistics. Journal of the American Statistical Association, 71, 791–799. https://doi.org/10.1080/01621459.1976.10480949
Box, J. F. (1987). Guinness, gosset, fisher, and small samples. Statistical Science, 2, 45–52. https://doi.org/10.1214/ss/1177013437
Brown, M. B., & Forsythe, A. B. (1974). Robust tests for equality of variances. Journal of the American Statistical Association, 69, 364–367. https://doi.org/10.2307/2285659
Campbell, D. T., & Stanley, J. C. (1963). Experimental and quasi-experimental designs for research. Houghton Mifflin.
Child, D. (1990). The essentials of factor analysis (2nd ed.). Cassell Educational.
Chronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555
Cochran, W. G. (1954). The χ2 test of goodness of fit. The Annals of Mathematical Statistics, 23, 315–345. https://doi.org/10.1214/aoms/1177729380
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum. https://doi.org/10.4324/9780203771587
Cramer, H. (1946). Mathematical methods of statistics. Princeton University Press. https://doi.org/10.1515/9781400883868
Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American Statistical Association, 56, 52–64. https://doi.org/10.1080/01621459.1961.10482090
Ellis, P. D. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge University Press. https://doi.org/10.1017/CBO9780511761676
Evans, J. St. B. T., Barston, J. L., & Pollard, P. (1983). On the conflict between logic and belief in syllogistic reasoning. Memory and Cognition, 11, 295–306. https://doi.org/10.3758/BF03196976
Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distributions (3rd ed). Wiley. https://doi.org/10.1002/9780470627242
Everitt, B. S. (1996). Making sense of statistics in psychology. A second-level course. Oxford University Press.
Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299. https://doi.org/10.1037/1082-989X.4.3.272
Fisher, R. A. (1922a). On the interpretation of χ2 from contingency tables, and the calculation of p. Journal of the Royal Statistical Society, 84, 87–94. https://doi.org/10.1111/j.2397-2335.1922.tb00768.x
Fisher, R. A. (1922b). On the mathematical foundation of theoretical statistics. Philosophical Transactions of the Royal Society A, 222, 309–368. https://doi.org/10.1098/rsta.1922.0009
Fisher, R. A. (1925). Statistical methods for research workers. Oliver & Boyd.
Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd ed.). Sage.
Gelman, A., & Stern, H. (2006). The difference between “significant” and “not significant” is not itself statistically significant. The American Statistician, 60, 328–331. https://doi.org/10.1198/000313006X152649
Geschwind, N. (1972). Language and the brain. Scientific American, 226(4), 76–83. https://doi.org/10.1038/scientificamerican0472-76
Hays, W. L. (1994). Statistics (5th ed.). Harcourt Brace.
Hedges, L. V. (1981). Distribution theory for glass’s estimator of effect size and related estimators. Journal of Educational Statistics, 6, 107–128. https://doi.org/10.2307/1164588
Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. Academic Press. https://doi.org/10.1016/C2009-0-03396-0
Hewitt, A. K., Foxcroft, D. R., & MacDonald, J. (2004). Multitrait-multimethod confirmatory factor analysis of the attributional style questionnaire. Personality and Individual Differences, 37(7), 1483–1491. https://doi.org/10.1016/j.paid.2004.02.005
Hogg, R. V., McKean, J. V., & Craig, A. T. (2005). Introduction to mathematical statistics (6th ed.). Pearson.
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70. https://doi.org/10.2307/4615733
Hróbjartsson, A., & Gøtzsche, P. (2010). Placebo interventions for all clinical conditions. Cochrane Database of Systematic Reviews, 1. https://doi.org/10.1002/14651858.cd003974.pub3
Hsu, J. C. (1996). Multiple comparisons: Theory and methods. Chapman & Hall. https://doi.org/10.1201/b15074
Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Med, 2(8), 697–701. https://doi.org/10.1371/journal.pmed.1004085
Jeffreys, H. (1961). The theory of probability (3rd ed.). Oxford. https://doi.org/10.1093/oso/9780198503682.001.0001
Johnson, V. E. (2013). Revised standards for statistical evidence. Proceedings of the National Academy of Sciences, 48, 19313–19317. https://doi.org/10.1073/pnas.1313476110
Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80, 237–251. https://doi.org/10.1037/h0034747
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795. https://doi.org/10.1080/01621459.1995.10476572
Keynes, J. M. (1923). A tract on monetary reform. Macmillan & Company.
Kline, P. (1994). An easy guide to factor analysis. Routledge. https://doi.org/10.4324/9781315788135
Kruschke, J. K. (2011). Doing Bayesian data analysis: A tutorial with R and BUGS. Academic Press.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 583–621. https://doi.org/10.1080/01621459.1952.10483441
Kühberger, A., Fritz, A., & Scherndl, T. (2014). Publication bias in psychology: A diagnosis based on the correlation between effect size and sample size. Public Library of Science One, 9, 1–8. https://doi.org/10.1371/journal.pone.0105825
Larntz, K. (1978). Small-sample comparisons of exact levels for chi-squared goodness-of-fit statistics. Journal of the American Statistical Association, 73, 253–263. https://doi.org/10.1080/01621459.1978.10481567
Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A practical course. Cambridge University Press. https://doi.org/10.1017/CBO9781139087759
Lehmann, E. L. (2011). Fisher, Neyman, and the creation of classical statistics. Springer.
Levene, H. (1960). Robust tests for equality of variances. In Olkin, I. and others (Ed.), Contributions to probability and statistics: Essays in honor of harold hotelling (pp. 278–292). Stanford University Press.
McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree: The case of r and d. Psychological Methods, 11, 386–401. https://doi.org/10.1037/1082-989x.11.4.386
Meehl, P. H. (1967). Theory testing in psychology and physics: A methodological paradox. Philosophy of Science, 34, 103–115. https://doi.org/10.1086/288135
Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine, 50, 157–175. https://doi.org/10.1080/14786440009463897
Peterson, C., & Seligman, M. (1984). Causal explanations as a risk factor for depression: Theory and evidence. Psychological Review, 91, 347–374. https://doi.org/10.1037/0033-295X.91.3.347
Pfungst, O. (1911). Clever hans (the horse of mr. Von osten): A contribution to experimental animal and human psychology (C. L. Rahn, Trans.). Henry Holt.
Rosenthal, R. (1966). Experimenter effects in behavioral research. Appleton.
Sahai, H., & Ageel, M. I. (2000). The analysis of variance: Fixed, random and mixed models. Birkhauser.
Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561–584. https://doi.org/10.1146/annurev.ps.46.020195.003021
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611. https://doi.org/10.1093/biomet/52.3-4.591
Sokal, R. R., & Rohlf, F. J. (1994). Biometry: The principles and practice of statistics in biological research (3rd ed.). Freeman.
Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680. https://doi.org/10.1126/science.103.2684.677
Stigler, S. M. (1986). The history of statistics. Harvard University Press.
Student, A. (1908). The probable error of a mean. Biometrika, 6, 1–2. https://doi.org/10.1093/biomet/6.1.1
Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131. https://doi.org/10.1126/science.185.4157.1124
Welch, B. L. (1947). The generalization of Student’s” problem when several different population variances are involved. Biometrika, 34, 28–35. https://doi.org/10.1093/biomet/34.1-2.28
Welch, B. L. (1951). On the comparison of several mean values: An alternative approach. Biometrika, 38, 330–336. https://doi.org/10.1093/biomet/38.3-4.330
Wilkinson, L., Wills, D., Rope, D., Norton, A., & Dubbs, R. (2006). The grammar of graphics. Springer.
Yates, F. (1934). Contingency tables involving small numbers and the χ2 test. Supplement to the Journal of the Royal Statistical Society, 1, 217–235. https://doi.org/10.2307/2983604